Η μεγαλύτερη χημική ένωση αποτελείται από 3 εκατ. άτομα
Σίγουρα δεν είναι δυνατές όλες αυτές οι ενώσεις
Η αλήθεια είναι ότι στη χημεία υπάρχουν κανόνες - αλλά είναι κάπως ελαστικοί, γεγονός που δημιουργεί περισσότερες δυνατότητες για χημικές ενώσεις.
Ακόμα και τα μοναχικά «ευγενή αέρια» (συμπεριλαμβανομένων του νέον, του αργού, του ξένου και του ηλίου), τα οποία τείνουν να μη συνδέονται με τίποτα, σχηματίζουν μερικές φορές ενώσεις. Το υδρίδιο του αργού, ArH+, δεν υπάρχει φυσικά στη Γη, αλλά έχει βρεθεί στο διάστημα. Οι επιστήμονες έχουν καταφέρει να φτιάξουν συνθετικές εκδοχές στα εργαστήρια που αναπαράγουν τις συνθήκες του διαστήματος.
Ορισμένοι χημικοί περνούν ολόκληρη τη σταδιοδρομία τους προσπαθώντας να δημιουργήσουν ενώσεις που, σύμφωνα με τους κανόνες της χημείας, δεν θα έπρεπε να υπάρχουν. Μερικές φορές οι προσπάθειες είναι επιτυχημένες.
Ένα άλλο ερώτημα που πρέπει να αντιμετωπίσουν οι επιστήμονες είναι αν η ένωση που θέλουν μπορεί να υπάρξει μόνο στο διάστημα ή σε ακραία περιβάλλοντα - σκεφτείτε την τεράστια θερμότητα και πίεση που συναντάμε στις υδροθερμικές πηγές, οι οποίες είναι σαν τους θερμοπίδακες, αλλά στον πυθμένα του ωκεανού.
Πώς οι επιστήμονες αναζητούν νέες ενώσεις
Συχνά η απάντηση είναι ότι αναζητούν ενώσεις που σχετίζονται με ήδη γνωστές. Υπάρχουν δύο βασικοί τρόποι για να το κάνει αυτό κανείς. Η μία είναι να πάρουμε μια γνωστή ένωση και να την αλλάξουμε λίγο - προσθέτοντας, διαγράφοντας ή ανταλλάσσοντας κάποια άτομα. Μια άλλη μέθοδος είναι να πάρουμε μια γνωστή χημική αντίδραση και να χρησιμοποιήσουμε νέα αρχικά υλικά. Αυτό συμβαίνει όταν η μέθοδος δημιουργίας είναι η ίδια, αλλά τα προϊόντα μπορεί να είναι εντελώς διαφορετικά. Και οι δύο αυτές μέθοδοι είναι τρόποι αναζήτησης γνωστών αγνώστων.
Επιστρέφοντας στο Lego, είναι σαν να φτιάχνεις ένα σπίτι, μετά ένα ελαφρώς διαφορετικό σπίτι, ή να αγοράζεις νέα τούβλα και να προσθέτεις έναν δεύτερο όροφο. Πολλοί χημικοί περνούν την καριέρα τους εξερευνώντας έναν από αυτούς τους χημικούς οίκους.
Πώς όμως θα αναζητήσουμε πραγματικά νέα χημεία
Ένας τρόπος με τον οποίο οι χημικοί μαθαίνουν για νέες ενώσεις είναι να εξετάζουν τον φυσικό κόσμο. Με αυτόν τον τρόπο βρέθηκε και η πενικιλίνη το 1928, όταν ο Αλεξάντερ Φλέμινγκ παρατήρησε ότι η μούχλα εμπόδιζε την ανάπτυξη των βακτηρίων.
Πάνω από μια δεκαετία αργότερα, το 1939, ο Χόγουαρντ Φλόρευ βρήκε τον τρόπο να παράγει πενικιλίνη σε χρήσιμες ποσότητες, εξακολουθώντας να χρησιμοποιεί μούχλα. Χρειάστηκε όμως ακόμη περισσότερος χρόνος, μέχρι το 1945, για να προσδιορίσει η Ντόροθι Κρόφουτ Χόντκιν τη χημική δομή της πενικιλίνης.
Αυτό είναι σημαντικό επειδή μέρος της δομής της πενικιλίνης περιέχει άτομα τοποθετημένα σε τετράγωνο, μια ασυνήθιστη χημική διάταξη που λίγοι χημικοί θα μπορούσαν να μαντέψουν και είναι δύσκολο να παραχθεί. Η κατανόηση της δομής της πενικιλίνης σήμαινε ότι γνωρίζαμε πώς έμοιαζε και μπορούσαμε να αναζητήσουμε τα χημικά ξαδέλφια της. Εάν με άλλα λόγια είμαστε αλλεργικοί στην πενικιλίνη και έχει τύχει να χρειαστούμε ένα εναλλακτικό αντιβιοτικό, πρέπει να ευχαριστήσουμε την Κρόφουτ Χόντκιν.
Σήμερα, είναι πολύ πιο εύκολο να προσδιοριστεί η δομή νέων ενώσεων. Η τεχνική των ακτίνων Χ που εφηύρε η Κρόφουτ Χόντκιν στο δρόμο της για τον προσδιορισμό της δομής της πενικιλίνης εξακολουθεί να χρησιμοποιείται παγκοσμίως για τη μελέτη ενώσεων. Και η ίδια η τεχνική μαγνητικής τομογραφίας που χρησιμοποιούν τα νοσοκομεία για τη διάγνωση ασθενειών μπορεί επίσης να χρησιμοποιηθεί σε χημικές ενώσεις για την ανάλυση της δομής τους.
Αλλά ακόμη και αν ένας χημικός μαντέψει μια εντελώς νέα δομή που δεν σχετίζεται με καμία ένωση γνωστή στη Γη, θα πρέπει να την παρασκευάσει, και αυτό είναι το δύσκολο μέρος.
Για πολλές χρήσιμες ενώσεις, όπως η πενικιλίνη, είναι ευκολότερο και φθηνότερο να «καλλιεργηθούν» και να εξαχθούν από τη μούχλα, από φυτά ή έντομα. Έτσι, οι επιστήμονες που αναζητούν νέα χημεία εξακολουθούν συχνά να αναζητούν έμπνευση στις πιο μικρές γωνιές του κόσμου γύρω μας.